|
Test Summary and ConclusionsI started testing, gingerly, to find out if draining unprogrammed current from the Prius HV section would cause problems with the car or control computer. I decided to conclude the test at the 2.4kW level because this was approaching the rating of my interconnections, and I felt that I had learned all I needed to with the tests I did perform. Error analysisIf you review the test results, you will see them nicely calibrated in Watts, from 50 to 2400. Of course nothing is that precise, but for a feasibility study, it doesn't really matter if it's 2200, 2400, or 2600 W. If my goal were greater precision, I would have to take into account some second order errors:
"Reads higher power" above means that my "reading," which was the simple addition of the light bulb wattages, would be higher than actual due the contribution of the error in question. Test Analysis and ExtrapolationAt no time during the test, including the half-hour 2.4kW load test, did the Prius exhibit any symptoms or stigmata of distress. As the load current was increased the engine turned on and stayed on for a longer period to recharge the batteries. This is exactly what one would expect, and nothing untoward was observed. At the higher load levels the auto cooling fan would also come on during a portion of the engine operation cycle. Since the car was stationary, this is expected behavior. Accordingly, I conclude that the Prius is capable, based on the actual test, of providing 2.4kW power at a nominal 220VDC. Now for the interesting part. In the latter two tests I carefully timed the engine on/engine off periods. I was curious to see how much engine time was necessary to provide the battery charge to keep the load going continuously. Here's the data in tabular form:
The "Engine Power Supplied" comes from a conservation argument: The engine must supply (at least) the full load power for the full on/off period to prevent discharging the batteries. Since it does so for a fraction of the time, it must provide at least (load)/(duty cycle) power for the period it is on. Without going crazy extrapolating to higher loads, or guessing about efficiency or lack thereof in the battery charge/discharge cycle, I think it is reasonable to conclude that the Prius is capable of providing between 5 and 6kW of continuous power without exceeding any ratings or doing anything beyond what is normally expected of it.* Compare this type of operation with normal driving, which typically requires about 5-10kW depending on speed, and obviously is performed continuously for hours at a time on the Interstates. In addition to the normal driving base load, the car retains power for passing, climbing hills, etc. Another point of comparison is the Prius specification sheet, which indicates that this is very comfortably within the vehicle's ratings. ConclusionThe tests I have performed appear to confirm the possibility of using the Prius as a source of electric power, with a 5kW rating and a voltage output nominally between 210 and 235V (at the vehicle terminals). I further found no reason why this power can't be taken "continuously" as long as the gas tank is periodically replenished. The actual tests were limited to 2.4kW and 30 minutes and the above conclusion was extrapolated from them for the reasons given. Additionally, because the power is coming primarily from rechargeable cells, and their circuit is fused at 120A, it would seem that there is the possibility of taking peak power of at least 21kW (based on the specifications) and possibly even more for very brief periods. This assertion has not been tested by me-I don't have enough plywood to mount all the lightbulbs. Obligatory Safety NotesThese tests were performed with the Prius outdoors. Although carbon monoxide emissions are low, they are certainly not zero. Anyone attempting to reproduce or expand on these results should take care not to die from CO inhalation, and should also read the electrical safety discussion in the Toyota Prius Owner's Manual, the Service Manual, and less authoritatively, this web site. FollowupsGraham Davies has done a lot of testing of his Prius under normal driving conditions, and has an interesting technical writeup on his web site. It's not precisely applicable since it's an earlier model year Prius. A gentleman who happens to have a Prius battery unencumbered with a surrounding automobile performed battery discharge tests at the 4kW and 6kW level. Although there is nothing the least bit surprising about the data on this graph, it is very valuable as a comparison against the data I collected which represents only a small portion of the discharge curve. Click on the graph below for a full-size view. *Elsewhere on this web site I've taken to recommending 3kW average power maximum. This is based on the fact that Toyota themselves have mentioned this figure in an experimental house-power project, and discussions with a number of people who are concerned about thermal overload. I share that concern absent further tests or the availability of detailed specifications. Because of long thermal time constants, I still see no problem taking much higher peak power, or 5-6kW for reasonable periods as long as the average isn't exceeded long-term. |
||||||||||||||||||||||||||||||||||||||||||||||
Updated 09 July 2007 |